This paper proposes a systematic approach for identifying the translational dynamics of a novel two-layer octocopter. Initially, we derive the non-linear theoretical dynamic model of the conventional octocopter using the Newton–Euler formulation, aimed at obtaining a simplified model suitable for tuning PID gains necessary for controller implementation. Following this, a controller is designed and tested in the Matlab/Simulink environment to ensure stable flight performance of the octocopter. Subsequently, the novel octocopter prototype is developed, fabricated, and assembled, followed by a series of outdoor flight tests conducted under various environmental conditions to collect data representing the flight characteristics of the two-layer vehicle in different scenarios. Based on the data recorded during flights, we identify the transfer functions of the translational dynamics of the modified vehicle using the prediction error method (PEM). The empirical model is then validated through different flight tests. The results presented in this study exhibit a high level of agreement and demonstrate the efficacy of the proposed approach to predict the octocopter’s position based only on motor inputs and initial states of the system. Despite the inherent non-linearity, significant aerodynamic interactions, and strongly coupled nature of the system, our findings highlight the robustness and reliability of the proposed approach, which can be used to identify the model of any type of multi-rotor or fixed-wing UAV, specifically when you have a challenging design.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Experimental Identification of the Translational Dynamics of a Novel Two-Layer Octocopter


    Beteiligte:
    Mohamed Elhesasy (Autor:in) / Rashed Khader (Autor:in) / Tarek N. Dief (Autor:in) / Mohamed M. Kamra (Autor:in) / Mohamed Okasha (Autor:in) / Saeed K. Alnuaimi (Autor:in)


    Erscheinungsdatum :

    2024




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt




    OCTOCOPTER

    COVALENCO ANDREI | Europäisches Patentamt | 2018

    Freier Zugriff

    Experimental Low-Frequency Noise Characterization of an Octocopter Drone

    Subramanyam, Ramesh Raja / Castro Mota, Rafael / Picker, Kevin et al. | AIAA | 2024


    Observer Controller Identification of a Medium-Weight Co-Axial Octocopter

    Iyer, Venkatakrishnan V. / Johnson, Eric N. / Singla, Puneet | TIBKAT | 2022


    Observer Controller Identification of a Medium-Weight Co-axial Octocopter

    Iyer, Venkatakrishnan V. / Johnson, Eric N. / Singla, Puneet | AIAA | 2022


    Image-aided inertial navigation for an Octocopter

    Baheerathan, S. / Hagen, O. K. | SPIE | 2018