Abstract Pedestrian detection is a classic problem in computer vision, which has an essential impact on the safety of urban autonomous driving. Although significant improvement has been made in pedestrian detection recently, small‐scale pedestrian detection is still challenging. To effectively tackle this issue, a multi‐scale pedestrian detector based on self‐attention mechanism and adaptive spatial feature fusion is proposed in this paper. In order to better extract global information, the spatial attention mechanism asymmetric pyramid non‐local block (APNB) module is applied. To achieve scale‐invariance detection, multiple detection branches are designed, which include a high‐resolution detection branch and a low‐resolution detection branch. In integrating multi‐scale features, the adaptively spatial feature fusion (ASFF) method is employed, which can solve the problem of feature inconsistency across different scales. Experimental results show that the proposed method obtains competitive performance on Caltech and CityPersons datasets.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Multi‐scale pedestrian detection based on self‐attention and adaptively spatial feature fusion


    Beteiligte:
    Minjun Wang (Autor:in) / Houjin Chen (Autor:in) / Yanfeng Li (Autor:in) / Yuhao You (Autor:in) / Jinlei Zhu (Autor:in)


    Erscheinungsdatum :

    2021




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt




    Multi‐scale pedestrian detection based on self‐attention and adaptively spatial feature fusion

    Wang, Minjun / Chen, Houjin / Li, Yanfeng et al. | Wiley | 2021

    Freier Zugriff

    A Multi-Feature Fusion Based Pedestrian Detection Method

    Dong, Enzeng / Jing, Cunlei / Zhang, Zufeng | British Library Conference Proceedings | 2020


    Attention‐based multi‐scale feature fusion for free‐space detection

    Song, Pengfei / Fan, Hui / Li, Jinjiang et al. | Wiley | 2022

    Freier Zugriff

    Attention‐based multi‐scale feature fusion for free‐space detection

    Pengfei Song / Hui Fan / Jinjiang Li et al. | DOAJ | 2022

    Freier Zugriff

    Multi-attention network for pedestrian intention prediction based on spatio-temporal feature fusion

    Zhang, Xiaofei / Wang, Xiaolan / Zhang, Weiwei et al. | SAGE Publications | 2024