Traffic congestion in urban areas is a pressing challenge, with roundabouts and signalized intersections offering different operational benefits. This study explores the integration of these two intersection types, focusing on the optimal distance between them to ensure efficient traffic flow. Using traffic microsimulations in VISSIM, the research examines multiple scenarios involving isolated roundabouts and those adjacent to signalized intersections, considering variables such as peak-hour traffic volume, flow distribution, and intersection spacing. Results indicate that shorter distances (<50 m) between roundabouts and signalized intersections lead to increased traffic indicators due to congestion spillback. In contrast, distances exceeding 100 m mitigate these inefficiencies, approaching the performance of isolated roundabouts. Balanced traffic distribution between approaches (50:50) enhance system performance at lower volumes but exacerbate congestion at higher volumes. A novel aspect of this study is the development of a regression model that integrates microsimulation outputs to predict travel time based on peak-hour traffic volume, flow ratios, and intersection distance, demonstrating a 90.9% explanatory power. These findings emphasize the need for strategic planning in integrating roundabouts and signalized intersections to balance operational efficiency.
A Theoretical Model for Optimizing Signalized Intersection and Roundabout Distance Using Microsimulations
2025
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
British Library Conference Proceedings | 2010
|An Optimal Timing Model for Signalized Roundabout Intersections
British Library Conference Proceedings | 2010
|