This paper considers a decentralized and autonomous wireless network of low SWaP (size, weight, and power) fixed-wing UAVs (unmanned aerial vehicles) used for remote exploration and monitoring of targets in an inaccessible area lacking communication infrastructure. Here, the UAVs collaborate to find target(s) and use routing protocols to forward the sensed data of target(s) to an aerial base station (BS) in real-time through multihop communication, which can then transmit the data to a control center. However, the unpredictability of target locations and the highly dynamic nature of autonomous, decentralized UAV networks result in frequent route breaks or traffic disruptions. Traditional routing schemes cannot quickly adapt to dynamic UAV networks and can incur large control overhead and delays. In addition, their performance suffers from poor network connectivity in sparse networks with multiple objectives (exploration and monitoring of targets), which results in frequent route unavailability. To address these challenges, we propose two routing schemes: Pipe routing and TC-Pipe routing. Pipe routing is a mobility-, congestion-, and energy-aware scheme that discovers routes to the BS on-demand and proactively switches to alternate high-quality routes within a limited region around the routes (referred to as the “pipe”) when needed. TC-Pipe routing extends this approach by incorporating a decentralized topology control mechanism to help maintain robust connectivity in the pipe region around the routes, resulting in improved route stability and availability. The proposed schemes adopt a novel approach by integrating the topology control with routing protocol and mobility model, and rely only on local information in a distributed manner. Comprehensive evaluations under diverse network and traffic conditions—including UAV density and speed, number of targets, and fault tolerance—show that the proposed schemes improve throughput by reducing flow interruptions and packet drops caused by mobility, congestion, and node failures. At the same time, the impact on coverage performance (measured in terms of coverage and coverage fairness) is minimal, even with multiple targets. Additionally, the performance of both schemes degrades gracefully as the percentage of UAV failures in the network increases. Compared to schemes that use dedicated UAVs as relay nodes to establish a route to the BS when the UAV density is low, Pipe and TC-Pipe routing offer better coverage and connectivity trade-offs, with the TC-Pipe providing the best trade-off.
Pipe Routing with Topology Control for Decentralized and Autonomous UAV Networks
2025
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Real-Time Communication Control in Decentralized Autonomous Sensor Networks
AIAA | 2022
|Decentralized Control of Autonomous Vehicles
NTIS | 2003
|Autonomous decentralized train control technology
IEEE | 2009
|On decentralized dynamic routing for congested traffic networks
Tema Archiv | 1982
|