Improving the mixture formation and combustion of various types of fuels in the combustion chamber is one the ways for the development of modern engines. Requirements for reliability, durability, tactical and technical characteristics and, importantly, for environmental friendliness pose new problems in this area of science and technology. This is largely determined by the degree of perfection individual processes in the engine operating cycle. An increase in power in accordance with the requirements for an increase in energy saturation and productivity of transport vehicles is limited by the resource and reliability of the engine due to an increase in thermal and mechanical loading of the main parts. The expansion the scope of application is limited by increased emissions harmful substances with exhaust gases, levels noise and vibration a running engine. Consumption increasing amounts liquid fuels requires further improvements in fuel efficiency. The main process of the working cycle a piston engine is the process fuel combustion. Fuel efficiency, power, service life and environmental performance depend on its quality. Therefore, the greatest attention is paid to the improvement of this process. The development of modern engines consists in the study and improvement of the working process on liquid and gaseous fuel components. Based on the foregoing and in accordance with the urgency of this problem, the method of electromagnetic action on fuel was studied. The results of experimental studies have shown the effectiveness the use of electro physical effects on hydrocarbon fuel to improve the parameters and characteristics of heat engines. It has been established that the electro physical effect on hydrocarbon fuel increases the completeness of fuel combustion by 4 ... 6% and reduces the deposition of carbon deposits in the combustion chamber of a gas turbine engine by 20 ... 25%. Improvement the fuel combustion processes in the previous phases leads to a reduction in the afterburning phase, which entails a decrease in the exhaust gas temperature, a decrease in the concentration of carbon monoxide by 0.64 ... 0.7%, the concentration of hydrocarbons by 25 ... 35% and the concentration of nitrogen oxide by 12 ... 16%.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Improvement of mixing processes in the combustion chamber of thermal engines

    Iryna Morozova / Yuriy Tereshchenko / Vasyl Yehunko | DOAJ | 2022

    Freier Zugriff

    Combustion chamber construction with dual mixing regions for opposed-piston engines

    ABANI NEERAV / MACKENZIE RYAN G | Europäisches Patentamt | 2015

    Freier Zugriff

    Study on Variable Combustion Chamber (VCC) Engines

    Dong, J. / Ouyang, L. / Zhou, Y. et al. | British Library Conference Proceedings | 2012


    Combustion modelling of open chamber and pre-chamber gas engines

    Auer,M. / Wachtmeister,G. / Tech.Univ.Muenchen,DE | Kraftfahrwesen | 2009


    Modeling High-Pressure Mixing and Combustion Processes in Liquid Rocket Engines

    Oefelein, J. C. / Yang, V. | British Library Conference Proceedings | 1998