An optimization model is developed to solve the deterministic traffic assignment problem under congested transport networks with cost functions that have an asymmetric Jacobian. The proposed formulation is a generalization of Beckmann’s transformation that can incorporate network links with multivariate vector cost functions to capture the asymmetric interactions between the flows and costs of the different links. The objective function is built around a line integral that generalizes the simple definite integral in Beckmann’s transformation and is parameterised to ensure the solution of the new problem satisfies Wardrop’s first principle of network equilibrium. It is shown that this method is equivalent to the variational inequality approach. Our new approach could be extended to supply-demand equilibria models in other markets than transportation, with complementary or substitute goods/services in which there are asymmetric interactions between prices.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Generalization of Beckmann’s Transformation for Traffic Assignment Models with Asymmetric Cost Functions


    Beteiligte:


    Erscheinungsdatum :

    2024




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt




    Equitable Traffic Assignment with Environmental Cost Functions

    Benedek, Christine M. | Online Contents | 1998


    Equitable Traffic Assignment with Environmental Cost Functions

    Benedek, C. M. / Rilett, L. R. | British Library Online Contents | 1998


    Computational Experiments with a Combined Traffic Assignment and Control Model with Asymmetric Cost Functions

    Meneguzzer, C. / ASCE; Urban Transportation Division; Committee of Advanced Technology | British Library Conference Proceedings | 1996



    Asymmetric Multiclass Traffic Assignment: A Coherent Formulation

    Toint, P. / Wynter, L. | British Library Conference Proceedings | 1996