This paper introduces a robust synchronization method for orthogonal frequency division multiplexing (OFDM) in multi-unmanned aerial vehicle (UAV) communication systems, focusing on minimizing overhead while achieving reliable synchronization. The proposed synchronization scheme enhances both frame efficiency and implementation simplicity. Initially, a high-efficiency frame structure is designed without a guard time interval, utilizing a preamble sequence to simultaneously achieve both symbol synchronization and automatic gain control (AGC) before demodulation. Subsequently, a novel 2-bit non-uniform quantization method for the Zadoff–Chu sequences is developed, enabling the correlation operations in the traditional symbol synchronization algorithm to be implemented via bitwise exclusive OR (XOR) and addition operations. The complexity of hardware implementation and the energy consumption for symbol synchronization can be reduced significantly. Furthermore, the impact of AGC on frequency synchronization performance is examined, and an improved frequency synchronization method based on AGC gain compensation is proposed. Finally, the performance of the proposed method is rigorously analyzed and compared with that of the traditional method through computer simulations, demonstrating the effectiveness and superiority of the proposed approach.
Robust Symbol and Frequency Synchronization Method for Burst OFDM Systems in UAV Communication
2024
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Wiley | 2006
|British Library Online Contents | 2013
|Training sequence based carrier frequency synchronization method for OFDM system
British Library Online Contents | 2005
|