The decentralized model predictive control (DMPC) of multiple cooperative vehicles with the possibility of communication loss/delay is investigated. The neighboring vehicles exchange their predicted trajectories at every sample time to maintain the cooperation objectives. In the event of a communication loss (packet dropout), the most recent available information, which is potentially delayed, is used. Then the communication loss problem changes to a cooperative problem when random large communication delays are present. Such large communication delays can lead to poor cooperation performance and unsafe behaviors such as collisions. A new DMPC approach is developed to improve the cooperation performance and achieve safety in the presence of the large communication delays. The proposed DMPC architecture estimates the tail of neighbor's trajectory which is not available due to the large communication delays for improving the performance. The concept of the tube MPC is also employed to provide the safety of the fleet against collisions, in the presence of large intervehicle communication delays. In this approach, a tube shaped trajectory set is assumed around the trajectory of the neighboring vehicles whose trajectory is delayed/lost. The radius of tube is a function of the communication delay and vehicle's maneuverability (in the absence of model uncertainty). The simulation of formation problem of multiple vehicles is employed to illustrate the effectiveness of the proposed approach.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Decentralized Model Predictive Control for Cooperative Multiple Vehicles Subject to Communication Loss


    Beteiligte:
    Hojjat A. Izadi (Autor:in) / Brandon W. Gordon (Autor:in) / Youmin Zhang (Autor:in)


    Erscheinungsdatum :

    2011




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt





    Decentralized Cooperative Conflict Resolution for Multiple Nonholonomic Vehicles

    Frazzoli, Emilio / Pallottino, Lucia / Scordio, Vincenzo et al. | AIAA | 2005


    Rule-Based Cooperative Collision Avoidance Using Decentralized Model Predictive Control

    Izadi, H.A. / Gordon, B.W. / Zhang, Y. et al. | British Library Conference Proceedings | 2011


    Rule-Based Cooperative Collision Avoidance Using Decentralized Model Predictive Control

    Izadi, Hojjat A. / Gordon, Brandon W. / Zhang, Youmin | AIAA | 2011


    Decentralized Sliding Control of Cooperative Multi-Agent Systems Subject to Communication Delays

    Sharifi, Farid / Gordon, Brandon W. / Zhang, Youmin | AIAA | 2010