This paper presents a redesigned YOLO-based model tailored for small-object detection in drone applications. To enhance its performance in detecting small and blurry targets, this study introduces the C3_CAA module to refine feature maps, integrates the CPA module and SI-IoU to improve detection accuracy, and incorporates channel and spatial attention mechanisms to further enhance target localization and identification performance.The experimental results indicated that the proposed method performs well on multiple datasets. The mAP value increases by 2% on the VISDRONE dataset, 1.6% on the UAVDT dataset, 0.9% on the CARPK dataset, and 1% on the UAVROD data set.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    ST-YOLO: An Enhanced Detector of Small Objects in Unmanned Aerial Vehicle Imagery


    Beteiligte:
    Haimin Yan (Autor:in) / Xiangbo Kong (Autor:in) / Juncheng Wang (Autor:in) / Hiroyuki Tomiyama (Autor:in)


    Erscheinungsdatum :

    2025




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt




    SPB-YOLO: An Efficient Real-Time Detector For Unmanned Aerial Vehicle Images

    Wang, Xinran / Li, Weihong / Guo, Wei et al. | IEEE | 2021


    Unmanned aerial vehicle detector

    BENJAMIN JAMES COOK | Europäisches Patentamt | 2022

    Freier Zugriff

    Small unmanned aerial vehicle undercarriage and unmanned aerial vehicle

    PAN WUJIAN / ZHAO XINXIN / ZENG RUI et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    Small unmanned aerial vehicle

    FRANZ MAIER / ALFRED SCHOTTL | Europäisches Patentamt | 2017

    Freier Zugriff

    Geological exploration unmanned aerial vehicle detector

    MA CHUNGUANG / WANG ZHIJIE | Europäisches Patentamt | 2024

    Freier Zugriff