The primary objective of this study is to predict the short-term metro passenger flow using the proposed hybrid spatiotemporal deep learning neural network (HSTDL-net). The metro passenger flow data is collected from line 2 of Nanjing metro system to illustrate the study procedure. A hybrid spatiotemporal deep learning model is developed to predict both inbound and outbound passenger flows for every 10 minutes. The results suggest that the proposed HSTDL-net achieves better prediction performance on suburban stations than on urban stations, as well as generating the best prediction accuracy on transfer stations in terms of the lowest MAPE value. Moreover, a comparative analysis is conducted to compare the performance of proposed HSTDL-net with other typical methods, such as ARIMA, MLP, CNN, LSTM, and GBRT. The results indicate that, for both inbound and outbound passenger flow predictions, the HSTDL-net outperforms all the compared models on three types of stations. The results suggest that the proposed hybrid spatiotemporal deep learning neural network can more effectively and fully discover both spatial and temporal hidden correlations between stations for short-term metro passenger flow prediction. The results of this study could provide insightful suggestions for metro system authorities to adjust the operation plans and enhance the service quality of the entire metro system.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    A Hybrid Spatiotemporal Deep Learning Model for Short-Term Metro Passenger Flow Prediction


    Beteiligte:
    Hao Zhang (Autor:in) / Jie He (Autor:in) / Jie Bao (Autor:in) / Qiong Hong (Autor:in) / Xiaomeng Shi (Autor:in)


    Erscheinungsdatum :

    2020




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt




    Short-Term Passenger Flow Prediction Based on Federated Learning on the Urban Metro System

    Guowen Dai / Jinjun Tang / Jie Zeng et al. | DOAJ | 2025

    Freier Zugriff

    Adaptive graph convolutional network-based short-term passenger flow prediction for metro

    Zhao, Jianli / Zhang, Rumeng / Sun, Qiuxia et al. | Taylor & Francis Verlag | 2024



    Short-to-medium Term Passenger Flow Forecasting for Metro Stations using a Hybrid Model

    Li, Linchao / Wang, Yonggang / Zhong, Gang et al. | Online Contents | 2018


    Short-to-medium Term Passenger Flow Forecasting for Metro Stations using a Hybrid Model

    Li, Linchao / Wang, Yonggang / Zhong, Gang et al. | Springer Verlag | 2017