This paper presents a novel nonlinear sliding mode control scheme that combines on-line model modification, a nonlinear sliding mode controller, and a disturbance observer to solve the essential problems in spacecraft electromagnetic docking control, such as model uncertainties, unknown external disturbances, and inherent strong nonlinearity and coupling. An improved far-field model of electromagnetic force which is much more accurate than the widely used far-field model is proposed to enable the model parameters to be on-line self-adjusting. Then, the relationship between magnetic moment allocation and energy consumption is derived, and the optimal direction of the magnetic moment vector is obtained. Based on the proposed improved far-field model and the research results of magnetic moment allocation law, a fast-nonsingular terminal mode controller driven by a disturbance observer is designed in the presence of model uncertainties and external disturbances. The proposed control method is guaranteed to be chattering-free and to possess superior properties such as finite-time convergence, high-precision tracking, and strong robustness. Two simulation scenarios are conducted to illustrate the necessity of modifying the far-field model and the effectiveness of the proposed control scheme. The simulation results indicate the realization of electromagnetic soft docking and validate the merits of the proposed control scheme. In the end of this paper, some conclusions are drawn.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Disturbance Observer-Based Nonsingular Terminal Sliding Mode Control for Spacecraft Electromagnetic Docking


    Beteiligte:
    Jinghui Zhang (Autor:in) / Guoqiang Zeng (Autor:in) / Shifeng Zhang (Autor:in)


    Erscheinungsdatum :

    2020




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt




    Spacecraft Electromagnetic Docking Control Using Nonsingular Terminal Sliding Mode

    Zhang, Jinghui / Zeng, Guoqiang / Gao, Yudong | TIBKAT | 2022


    Spacecraft Electromagnetic Docking Control Using Nonsingular Terminal Sliding Mode

    Zhang, Jinghui / Zeng, Guoqiang / Gao, Yudong | British Library Conference Proceedings | 2022


    Spacecraft Electromagnetic Docking Control Using Nonsingular Terminal Sliding Mode

    Zhang, Jinghui / Zeng, Guoqiang / Gao, Yudong | Springer Verlag | 2021