In view of the fact that the density-based clustering algorithm is sensitive to the input data, which results in the limitation of computing space and poor timeliness, a new method is proposed based on grid information entropy clustering algorithm for mining hotspots of taxi passengers. This paper selects representative geographical areas of Nanjing and Beijing as the research areas and uses information entropy and aggregation degree to analyze the distribution of passenger-carrying points. This algorithm uses a grid instead of original trajectory data to calculate and excavate taxi passenger hotspots. Through the comparison and analysis of the data of taxi loading points in Nanjing and Beijing, it is found that the experimental results are consistent with the actual urban passenger hotspots, which verifies the effectiveness of the algorithm. It overcomes the shortcomings of a density-based clustering algorithm that is limited by computing space and poor timeliness, reduces the size of data needed to be processed, and has greater flexibility to process and analyze massive data. The research results can provide an important scientific basis for urban traffic guidance and urban management.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Mining Taxi Pick-Up Hotspots Based on Grid Information Entropy Clustering Algorithm


    Beteiligte:
    Shuoben Bi (Autor:in) / Ruizhuang Xu (Autor:in) / Aili Liu (Autor:in) / Luye Wang (Autor:in) / Lei Wan (Autor:in)


    Erscheinungsdatum :

    2021




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt





    Exploiting Taxi Demand Hotspots Based on Vehicular Big Data Analytics

    Zhang, Lu / Chen, Cailian / Wang, Yiyin et al. | IEEE | 2016


    Taxi Demand Prediction Based on a Combination Forecasting Model in Hotspots

    Zhizhen Liu / Hong Chen / Yan Li et al. | DOAJ | 2020

    Freier Zugriff

    Identifying the Hotspots in Urban Areas Using Taxi GPS Trajectories

    Bai, Fengshan / Feng, Huifang / Xu, Youji | IEEE | 2018


    Taxi Trajectory Clustering Based on Network Clustering Method

    Wang, Rui / Tang, Jinjun / Zhou, Jun et al. | ASCE | 2022