The hybrid grid was adopted and numerical prediction analysis of propeller unsteady bearing force considering free surface was performed for mode and full-scale KCS hull–propeller–rudder system by employing RANS method and VOF model. In order to obtain the propeller velocity under self-propulsion point, firstly, the numerical simulation for self-propulsion test of full-scale ship is carried out. The results show that the scale effect of velocity at self-propulsion point and wake fraction is obvious. Then, the transient two-phase flow calculations are performed for model and full-scale KCS hull–propeller–rudder systems. According to the monitoring data, it is found that the propeller unsteady bearing force is fluctuating periodically over time and full-scale propeller's time-average value is smaller than model-scale's. The frequency spectrum curves are also provided after fast Fourier transform. By analyzing the frequency spectrum data, it is easy to summarize that each component of the propeller bearing force have the same fluctuation frequency and the peak in BFP is maximum. What's more, each component of full-scale bearing force's fluctuation value is bigger than model-scale's except the bending moment coefficient about the Y-axis.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Numerical prediction analysis of propeller bearing force for full-scale hull–propeller–rudder system


    Beteiligte:
    Chao Wang (Autor:in) / Shuai Sun (Autor:in) / Liang Li (Autor:in) / Liyu Ye (Autor:in)


    Erscheinungsdatum :

    2016




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt