At present, in the fault diagnosis database of submarine optical fiber network, the attribute selection of large data is completed by detecting the attributes of the data, the accuracy of large data attribute selection cannot be guaranteed. In this paper, a large data attribute selection method based on support vector machines (SVM) for fault diagnosis database of submarine optical fiber network is proposed. Mining large data in the database of optical fiber network fault diagnosis, and calculate its attribute weight, attribute classification is completed according to attribute weight, so as to complete attribute selection of large data. Experimental results prove that ,the proposed method can improve the accuracy of large data attribute selection in fault diagnosis database of submarine optical fiber network, and has high use value.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Research on Big Data Attribute Selection Method in Submarine Optical Fiber Network Fault Diagnosis Database


    Beteiligte:
    Chen Ganlang (Autor:in)


    Erscheinungsdatum :

    2017




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt





    SUBMARINE OPTICAL FIBER NETWORK

    JACK ING JENG | Europäisches Patentamt | 2015

    Freier Zugriff

    Airborne internet access through submarine optical fiber cables

    Nawaz, Syed Junaid / Khan, Noor M. / Tiwana, Moazzam Islam et al. | IEEE | 2015


    Design and characteristics of submarine optical fiber cable

    Ishihara, K. / Kawata, O. / Yoshizawa, N. | Tema Archiv | 1985


    Submarine cable fault detection system

    ZHU XINAN / ZHAO YAN / HUANG WEINAN et al. | Europäisches Patentamt | 2024

    Freier Zugriff