The asymptotic behavior of solutions of the Burgers equation and its generalizations with initial value - boundary problem on a finite interval with constant boundary conditions is studied. Since the equation describes the movement in a dissipative medium, the initial profile of the solution will evolve to an time-invariant solution with the same boundary values. However there are three ways of obtaining the same result: the initial profile may regularly decay to the smooth invariant solution; or a Heaviside-type gap develops through a dispersive shock and multi-oscillations; or an asymptotic limit is a stationary ’sawtooth’ solution with periodical breaks of derivative.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    SAWTOOTH SOLUTIONS TO THE BURGERS EQUATION ON AN INTERVAL


    Beteiligte:
    A. V. Samokhin (Autor:in) / Y. I. Dementyev (Autor:in)


    Erscheinungsdatum :

    2016



    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt





    Optimal Mesh Adaption for Burgers' Equation

    Phillips, Tyrone / Roy, Christopher / Alyanak, Edward et al. | AIAA | 2012


    OPTIMAL MESH ADAPTION FOR BURGERS' EQUATION

    Phillips, T. / Roy, C. / Alyanak, E. et al. | British Library Conference Proceedings | 2012


    Shock Regularization for the Burgers Equation

    Mohseni, Kamran / Zhao, Hongwu / Marsden, Jerrold | AIAA | 2006