This paper utilizes the distributed model predictive control (DMPC) method to investigate the formation control problem of unmanned aerial vehicles (UAVs) in the obstacle environment and establishes cooperative capability evaluation metrics of the swarm. Based on the DMPC approach, the formation cost function is constructed to adjust the relative positions and velocities of UAVs, ensuring the desired formation. Additionally, to address the obstacle avoidance problem in the formation, the obstacle avoidance function is designed to provide safe formation control in the obstacle environment. To evaluate the cooperative capability of UAVs, we design evaluation metrics from multiple dimensions to reflect the swarm’s cooperative capability. Finally, the simulation results show the effectiveness of the formation control method with obstacle avoidance and the applicability of the swarm’s cooperative capability evaluation metrics.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Distributed Model Predictive Formation Control for UAVs and Cooperative Capability Evaluation of Swarm


    Beteiligte:
    Ming Yang (Autor:in) / Xiaoyi Guan (Autor:in) / Mingming Shi (Autor:in) / Bin Li (Autor:in) / Chen Wei (Autor:in) / Ka-Fai Cedric Yiu (Autor:in)


    Erscheinungsdatum :

    2025




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt




    Distributed Model Predictive Control Cooperative Guidance Law for Multiple UAVs

    Hanqiao Huang / Yue Dong / Haoran Cui et al. | DOAJ | 2024

    Freier Zugriff


    ICAS2016_0326: MODEL PREDICTIVE CONTROL FOR A SWARM OF FIXED WING UAVS

    Ariola, M. / Mattei, M. / D Amato, E. et al. | British Library Conference Proceedings | 2016


    Multiple cooperative UAVs target tracking using Learning Based Model Predictive Control

    Hafez, Ahmed. T. / Givigi, Sidney. N. / Ghamry, Khaled A. et al. | IEEE | 2015


    Real time tactic switching for multiple cooperative UAVs via Model Predictive Control

    Hafez, A. T. / Givigi, S. N. / Schwartz, Howard M. et al. | IEEE | 2015