We present a real-time traffic flow controller structure that can keep traffic under control using image processing techniques. In this way, a camera is used in every section of the robot to take pictures of the traffic where traffic jams will appear. The number of vehicles in these images is designed using image processing tools. In the proposed image, green and red signals are represented using LEDs and the diminished green signal supervisor is signified by a specific presentation.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Density Based Traffic Control System with Convolutional Neural Network


    Beteiligte:
    Saple Mrunali R. (Autor:in) / Jadhav Tejaswini M. (Autor:in) / Kode Saurabh Y. (Autor:in) / Gargi (Autor:in)


    Erscheinungsdatum :

    2022




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt




    Traffic Density Estimation and Traffic Control using Convolutional Neural Network

    Ikiriwatte, A.K. / Perera, D.D.R. / Samarakoon, S.M.M.C. et al. | IEEE | 2019


    Traffic Density Estimation using a Convolutional Neural Network

    Nubert, Julian / Truong, Nicholas Giai / Lim, Abel et al. | ArXiv | 2018

    Freier Zugriff



    Traffic Video Analytic Based on Convolutional Neural Network (CNN)

    Hedzir, Izzah Hazirah / Mahamad, Abd Kadir / Saon, Sharifah et al. | IEEE | 2023