Path planning is one of the hotspots in the research of automotive engineering. Aiming at the issue of robot path planning with the goal of finding a collision-free optimal motion path in an environment with barriers, this study proposes an adaptive parallel arithmetic optimization algorithm (APAOA) with a novel parallel communication strategy. Comparisons with other popular algorithms on 18 benchmark functions are committed. Experimental results show that the proposed algorithm performs better in terms of solution accuracy and convergence speed, and the proposed strategy can prevent the algorithm from falling into a local optimal solution. Finally, we apply APAOA to solve the problem of robot path planning.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    An Adaptive Parallel Arithmetic Optimization Algorithm for Robot Path Planning


    Beteiligte:
    Ruo-Bin Wang (Autor:in) / Wei-Feng Wang (Autor:in) / Lin Xu (Autor:in) / Jeng-Shyang Pan (Autor:in) / Shu-Chuan Chu (Autor:in)


    Erscheinungsdatum :

    2021




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt




    Path planning and trajectory optimization of delta parallel robot

    Shareef, Zeeshan | BASE | 2015

    Freier Zugriff

    Path planning and trajectory optimization of delta parallel robot

    Shareef, Zeeshan | BASE | 2015

    Freier Zugriff

    Robot Path Planning Based on Adaptive Parameter Ant Colony Algorithm

    Liu, Hongli / Bao, Yongfeng / Shao, Lei et al. | British Library Conference Proceedings | 2022


    Optimizing Robot Path Planning with the Particle Swarm Optimization Algorithm

    Falah Jaber Kshash / Ahmed Yahia Yaseen / Salam Saadoon Kals | BASE | 2023

    Freier Zugriff

    Adaptive Path Planning for Mobile Robot Obstacle Avoidance

    Rong-Jong Wai / Chia-Ming Liu | BASE | 2011

    Freier Zugriff