Pipe spool supply in Korean shipbuilding industry consists of a complex supply chain comprising manufacturing and painting vendors. Major Korean shipyards with the most competitive edge have applied various policies and techniques to control the pipe spool supply chain and prevent production delays related to supply delays in pipe spools. Although research has been done on implementing the policies and techniques, there has been a gap on the theoretical consideration of pipe spool supply chain characteristics using a simulation model. Therefore, this study proposes an analytical method based on queueing model to analyze the characteristics of the pipe spool supply chain and also proposes a simulation model based on discrete event simulation (DES) to verify it. In addition, a numerical experiment using DES for the M/G/1 queuing model is conducted to examine the effect of time variability in the spool supply chain. From the more reliable experimental results, control parameters and management insights to manage the supply chain optimality are proposed and the effectiveness of policies that have been implemented by major shipyards is verified.
An analysis of pipe spool supply chain in shipbuilding using 2-stage queuing model and discrete event simulation
2024
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Elsevier | 2024
|Shipbuilding Supply Chain Integration Project
NTIS | 1998
|Some Queuing Models in Discrete Event Dynamical Systems
British Library Conference Proceedings | 1997
|