This paper examines the impact of applying dynamic traffic assignment (DTA) and quasi-dynamic traffic assignment (QDTA) models, which apply different route choice approaches (shortest paths based on current travel times, User Equilibrium: UE, and system optimum: SO), on the accuracy of the solution of the offline dynamic demand estimation problem. The evaluation scheme is based on the adoption of a bilevel approach, where the upper level consists of the adjustment of a starting demand using traffic measures and the lower level of the solution of the traffic network assignment problem. The SPSA AD-PI (Simultaneous Perturbation Stochastic Approximation Asymmetric Design Polynomial Interpolation) is adopted as a solution algorithm. A comparative analysis is conducted on a test network and the results highlight the importance of route choice model and information for the stability and the quality of the offline dynamic demand estimations.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Dynamic O-D Demand Estimation: Application of SPSA AD-PI Method in Conjunction with Different Assignment Strategies


    Beteiligte:
    Marialisa Nigro (Autor:in) / Akmal Abdelfatah (Autor:in) / Ernesto Cipriani (Autor:in) / Chiara Colombaroni (Autor:in) / Gaetano Fusco (Autor:in) / Andrea Gemma (Autor:in)


    Erscheinungsdatum :

    2018




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt





    SPSA Algorithm for Parachute Parameter Estimation

    Kothandaraman, Govindarajan / Rotea, Mario | AIAA | 2003


    Dynamic Origin-Destination Matrix Estimation with ICT Traffic Measurements using SPSA

    Ros-Roca, Xavier / Montero, Lidia / Barcelo, Jaume et al. | IEEE | 2021


    Techniques for improving the effectiveness of the SPSA algorithm in dynamic demand calibration

    Kostic, Bojan / Gentile, Guido / Antoniou, Constantinos | IEEE | 2017


    Demand Calibration of Multimodal Microscopic Traffic Simulation using Weighted Discrete SPSA

    Oh, Simon / Seshadri, Ravi / Azevedo, Carlos Lima et al. | Transportation Research Record | 2019