In this study, the proportional-integral-derivative (PID) controller of a sample thermoelectric cooler(TEC)system model is optimized using four different metaheuristic optimization algorithms. For this aim, the classical PID and the metaheuristic optimization algorithms as Coronavirus Herd Immunity Optimization (CHIO), Atomic Search Optimization (ASO), Artificial Bee Colony (ABC) and Particle Swarm Optimization (PSO)were used for control of a TEC system. The settling time and maximum overshoot criteria are used to compare performances of the optimized controllers. -20°C is the desired temperature for the cold side of this thermoelectric module. Since TEC systems requirequick cooling, CHIO-PID performs the best because it is the first to reach the set temperature of -20 ̊C in 42 seconds at the 1% band limit.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Control ofa ThermoelectricCooling Module by Metaheuristic Optimization Algorithms


    Beteiligte:
    Tufan KOÇ (Autor:in) / Nevra BAYHAN (Autor:in)


    Erscheinungsdatum :

    2024



    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt




    Speed Proportional Integrative Derivative Controller: Optimization Functions in Metaheuristic Algorithms

    Luis Fernando de Mingo López / Francisco Serradilla García / José Eugenio Naranjo Hernández et al. | DOAJ | 2021

    Freier Zugriff

    Application of metaheuristic optimization algorithms for image registration in mobile robot visual control

    Đokić, Lazar / Jokić, Aleksandar / Petrović, Milica et al. | BASE | 2021

    Freier Zugriff