Multi-intersection cooperative control for arterial or network scenarios is a crucial issue in urban traffic management. Multi-agent reinforcement learning (MARL) has been recognised as an efficient solution and shows outperformed results. However, most existing MARL-based methods treat intersection equally, ignoring different importance of each intersection, such as high traffic volume, connecting multiple main roads, serving as entry or exit point for highways or commercial areas, etc. Besides, learning efficiency and practicality remain challenges. To address these issues, this paper proposes a novel importance-aware MARL-based method named IALight for traffic optimisation control. First, a normalised traffic pressure is introduced to ensure our state and reward design can accurately reflect the status of intersection traffic flow. Second, a reward adjustment module is designed to modify the reward based on intersection importance. To enhance practicality and safety for real-world applications, we adopt a green duration optimisation strategy under a cyclic fixed phase sequence. Comprehensive experiments on both synthetic and real-world traffic scenarios demonstrate that the proposed IALight outperforms the traditional and deep reinforcement learning baselines by more than 20.41% and 17.88% in average vehicle travel time, respectively.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    IALight: Importance-Aware Multi-Agent Reinforcement Learning for Arterial Traffic Cooperative Control


    Beteiligte:
    Lu WEI (Autor:in) / Xiaoyan ZHANG (Autor:in) / Lijun FAN (Autor:in) / Lei GAO (Autor:in) / Jian YANG (Autor:in)


    Erscheinungsdatum :

    2025




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt





    Multi-Agent Deep Reinforcement Learning for Decentralized Cooperative Traffic Signal Control

    Zhao, Yang / Hu, Jian-Ming / Gao, Ming-Yang et al. | ASCE | 2020


    Microscopic Traffic Simulation by Cooperative Multi-agent Deep Reinforcement Learning

    Bacchiani, Giulio / Molinari, Daniele / Patander, Marco | ArXiv | 2019

    Freier Zugriff

    Multi-agent reinforcement learning traffic signal cooperative control method considering intersection heterogeneity

    BIE YIMING / JI YUTING / JI JINHUA et al. | Europäisches Patentamt | 2024

    Freier Zugriff