The space–air–ground integrated network can provide services to ground users in remote areas by utilizing high-altitude platform (HAP) drones to support stable user access and using low earth orbit (LEO) satellites to provide large-scale traffic backhaul. However, the rapid movement of LEO satellites requires dynamic maintenance of the matching relationship between LEO satellites and HAP drones. Additionally, different traffic types generated at HAP drones hold varying levels of values. Therefore, a tripartite matching problem among LEO satellites, HAP drones, and traffic types jointly considering multi-dimensional characteristics such as remaining visible time, channel condition, handover latency, and traffic storage capacity is formulated as mixed integer nonlinear programming to maximize the average transmitted traffic value. The traffic generation state for HAP drones is modeled as a mixture of stochasticity and determinism, which aligns with real-world scenarios, posing challenges for traditional optimization solvers. Thus, the original problem is decoupled into two independent sub-problems: traffic–drone matching and LEO–drone matching, which are addressed by mathematical simplification and multi-agent deep reinforcement learning with centralized training and decentralized execution, respectively. Simulation results verify the effectiveness and superiority of the proposed tripartite matching approach.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Joint Drone Access and LEO Satellite Backhaul for a Space–Air–Ground Integrated Network: A Multi-Agent Deep Reinforcement Learning-Based Approach


    Beteiligte:
    Xuan Huang (Autor:in) / Xu Xia (Autor:in) / Zhibo Wang (Autor:in) / Mugen Peng (Autor:in)


    Erscheinungsdatum :

    2024




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt




    Genetic-Algorithm-Aided Deep Reinforcement Learning for Multi-Agent Drone Delivery

    Farabi Ahmed Tarhan / Nazım Kemal Ure | DOAJ | 2024

    Freier Zugriff


    Truck-Drone Delivery Optimization Based on Multi-Agent Reinforcement Learning

    Zhiliang Bi / Xiwang Guo / Jiacun Wang et al. | DOAJ | 2024

    Freier Zugriff

    Multi-Agent Reinforcement Learning for Multiple Rogue Drone Interception

    Valianti, Panayiota / Malialis, Kleanthis / Kolios, Panayiotis et al. | IEEE | 2023


    DEEP REINFORCEMENT LEARNING FOR MULTI-AGENT AUTONOMOUS SATELLITE INSPECTION

    Lei, Henry H. / Shubert, Matt / Damron, Nathan et al. | Springer Verlag | 2024