In this thesis, we present Bayesian state estimation and machine learning methods for predicting traffic situations. The cognitive ability to assess situations and behaviors of traffic participants, and to anticipate possible developments is an essential requirement for several applications in the traffic domain, especially for self-driving cars. We present a method for learning behavior models from unlabeled traffic observations and develop improved learning methods for decision trees.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Learning Behavior Models for Interpreting and Predicting Traffic Situations


    Beteiligte:

    Erscheinungsdatum :

    2014



    Medientyp :

    Sonstige


    Format :

    Elektronische Ressource


    Sprache :

    Englisch






    Learning context sensitive behavior models from observations for predicting traffic situations

    Gindele, Tobias / Brechtel, Sebastian / Dillmann, Rudiger | IEEE | 2013



    SYSTEM FOR PREDICTING FUTURE TRAFFIC SITUATIONS

    OH SEUNG / BAEK SEUNG WON | Europäisches Patentamt | 2016

    Freier Zugriff

    Predicting road user behavior based on graphical representations of traffic situations

    ZIPFEL MICHAEL / REITINGER ANDREAS / HENSON CRAIG et al. | Europäisches Patentamt | 2024

    Freier Zugriff