This thesis aims to answer the research question of how alternative fuels and powertrains can reduce nitrogen oxide (NOx) and particulate matter (PM) emissions in hotspots. The thesis proposes a new spatial bottom-up model that computes mileages and local pollutants of road transport, inland waterway transport, rail transport and air transport for North Rhine-Westphalia (NRW) as representative case study. The model is organised in sub-modules. For instance, one module determines mileages and transport performances for each section of the transport networks using timetables, flight schedules, data from the Federal Statistical Office and a developed statistical model. Another module calculates emissions on each network section taking different vehicle classes, vehicle sizes, emission technologies, powertrains and fuels into account. Finally, a novel module balances emissions in urban areas for a following analysis. Besides the calculation of current emissions, several scenarios for future developments of the transportsector and their emissions were considered in the case study. Boundary conditions for future scenarios were set using forecasts of traffic performances for inland waterway transport and air transport, a developed model approach for forecasting road transport mileages, and devised approaches for determining fleet developments. The assumption for the reference scenarios was the continuation of using conventional fuels. The other tested scenarios included various alternative fuel options and powertrains, which were selected based on a novel methodology for selecting promising future fuel options. More specifically, the fuel options for road transport were Fischer-Tropsch diesel/ hydrogenated vegetable oil,Methanol to Gasoline, natural gas, dimethyl ether, hydrogen in fuel cells and electric power. Meanwhile, the fuel options for inland waterway transport were natural gas as well as hydrogen in fuel cells and internal combustion engines and for avitation the fuel option was Fischer-Tropsch kerosene. These and the reference scenarios were simulated with the proposed model.


    Zugriff

    Download

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Senkung zukünftiger Stickoxid- und Partikelemissionen in Nordrhein-Westfalen durch den Einsatz alternativer Energieträger und Antriebe


    Beteiligte:
    Breuer, Janos (Autor:in, )

    Erscheinungsdatum :

    01.01.2024


    Format / Umfang :

    vii, 339 pages


    Anmerkungen:

    Dissertation, RWTH Aachen University, 2024; Jülich : Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag, Schriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment 632, vii, 339 (2024). = Dissertation, RWTH Aachen University, 2024



    Medientyp :

    Sonstige


    Format :

    Elektronische Ressource


    Sprache :

    Englisch