This work presents a novel rule-based interaction-aware multi-modal prediction method for urban traffic scenarios. The method takes into account the most common classes of traffic participants and handles all relevant types of motion behaviors. The potential trajectories of the traffic participants are rolled out resulting in multi-modal probability distributions for the states of all agents for each prediction time step. The analysis of collision risks between these trajectories is the basis for the interaction-awareness. The prediction is fully interaction-aware by considering also the interactions between the obstacles. The system is able to predict complex urban scenarios with numerous different agents in real-time. The approach is evaluated using real-world scenarios and in a simulated environments.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Interaction-aware Prediction of Urban Traffic Scenarios


    Weitere Titelangaben:

    Interaktionsbewusste Vorhersage urbaner Verkehrsszenarien


    Beteiligte:
    Philipp, Andreas (Autor:in) / Göhring, Daniel (Autor:in) / Universitätsbibliothek Der FU Berlin (Gastgebende Institution)

    Erscheinungsdatum :

    2022


    Format / Umfang :

    8 Seiten



    Medientyp :

    Sonstige


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt



    Klassifikation :

    DDC:    000




    Learning Interaction-Aware Probabilistic Driver Behavior Models from Urban Scenarios

    Schulz, Jens / Hubmann, Constantin / Morin, Nikolai et al. | IEEE | 2019


    LEARNING INTERACTION-AWARE PROBABILISTIC DRIVER BEHAVIOR MODELS FROM URBAN SCENARIOS

    Schulz, Jens / Hubmann, Constantin / Morin, Nikolai et al. | British Library Conference Proceedings | 2019


    Learning Interaction-Aware Guidance for Trajectory Optimization in Dense Traffic Scenarios

    Brito, Bruno / Agarwal, Achin / Alonso-Mora, Javier | IEEE | 2022


    Interaction aware trajectory planning for merge scenarios in congested traffic situations

    Evestedt, Niclas / Ward, Erik / Folkesson, John et al. | IEEE | 2016


    Learning Interaction-aware Guidance Policies for Motion Planning in Dense Traffic Scenarios

    Brito, Bruno / Agarwal, Achin / Alonso-Mora, Javier | ArXiv | 2021

    Freier Zugriff