We introduce an incremental total least-squares vehicle mass estimation algorithm, based on a vehicle longitudinal dynamics model. Available control area network signals are used as model inputs and output. In contrast to common vehicle mass estimation schemes, where noise is only considered at the model output, our algorithm uses an errors-in-variables formulation and considers noise at the model inputs as well. A robust outlier treatment is realized as batch total least-squares routine and hence, the proposed algorithm works in a superior way on a broad range of vehicle acceleration. The results of six test runs on various vehicle masses show highly accurate mass estimation results on high and low dynamics of vehicular operation.


    Zugriff

    Download

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Vehicle Mass Estimation Using a Total Least-Squares Approach


    Beteiligte:
    Rhode, S. (Autor:in) / Gauterin, F. (Autor:in)

    Erscheinungsdatum :

    2012



    Medientyp :

    Sonstige


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Vehicle mass estimation using a total least-squares approach

    Rhode, Stephan / Gauterin, Frank | IEEE | 2012


    Vehicle Load Estimation Using Recursive Total Least Squares for Rollover Detection

    Hilyer, Trenton / Bevly, David M. | British Library Conference Proceedings | 2022


    Vehicle Load Estimation Using Recursive Total Least Squares for Rollover Detection

    Bevly, David M. / Hilyer, Trenton | SAE Technical Papers | 2022


    Vehicle Load Estimation Using Recursive Total Least Squares for Rollover Detection

    Hilyer, Trenton / Bevly, David M. | British Library Conference Proceedings | 2022