In this paper, we discussed the brief overview of SDN security survey, we specifically investigate the potential lt heats of man-in-the-middle attacks on the Open Flow control channel, we also describe a feasible attack model in the open flow channel, and then we implement attack demonstrations to show the severe consequences of such attacks. Additionally, we propose a lightweight countermeasure using Bloom filters. We implement a prototype for this method to monitor stealthy packet modifications. The successful attacks can effectively poison the Virtual Machine information, a fundamental building block for core SDN components and topology-aware SDN applications. With the poisoned network visibility, the upper-layer Open Flow controller services/apps may be totally misled, leading to serious hijacking, denial of service or man-in-the-middle attacks. The result of our evaluation shows that our Bloom filter monitoring system is efficient and consumes few resources


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    PROVIDING SECURITY AGAINST IP CROWDSOURCED SPOOFING ATTACKS ON CLOUD USING TOPOGUARD ALGORITHM


    Beteiligte:
    M, KEERTHIVASAN (Autor:in) / R, KISHORE (Autor:in) / M, MALATHI (Autor:in) / G, MONICA (Autor:in) / V, SENTHILKUMAR (Autor:in) / K, KUMARESAN (Autor:in) / K, DINESHKUMAR (Autor:in)

    Erscheinungsdatum :

    06.04.2019


    Anmerkungen:

    South Asian Journal of Engineering and Technology; Vol 8 No S 1 (2019): Volume 8, Supplementary Issue 1, Year 2019; 158-165 ; 2454-9614


    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch


    Klassifikation :

    DDC:    629



    Firms urged to tighten security after spoofing attacks

    British Library Online Contents | 2003


    A Radar System With Adaptive Waveform Selection Against Dynamic Spoofing Attacks

    Xie, Chao / Liu, Guanghua / Xu, You et al. | IEEE | 2025


    On Jamming Attacks in Crowdsourced Air Traffic Surveillance

    Leonardi, Mauro / Strohmeier, Martin / Lenders, Vincent | IEEE | 2021


    Detecting ADS-B Spoofing Attacks using Deep Neural Networks

    Ying, Xuhang / Mazer, Joanna / Bernieri, Giuseppe et al. | ArXiv | 2019

    Freier Zugriff