Learning agents can optimize standard autonomous navigation improving flexibility, efficiency, and computational cost of the system by adopting a wide variety of approaches. This work introduces the PIC4rl-gym, a fundamental modular framework to enhance navigation and learning research by mixing ROS2 and Gazebo, the standard tools of the robotics community, with Deep Reinforcement Learning (DRL). The paper describes the whole structure of the PIC4rl-gym, which fully integrates DRL agent's training and testing in several indoor and outdoor navigation scenarios and tasks. A modular approach is adopted to easily customize the simulation by selecting new platforms, sensors, or models. We demonstrate the potential of our novel gym by benchmarking the resulting policies, trained for different navigation tasks, with a complete set of metrics.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    PIC4rl-gym: a ROS2 Modular Framework for Robots Autonomous Navigation with Deep Reinforcement Learning



    Erscheinungsdatum :

    01.01.2023



    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    DDC:    629



    ROS2 for beginners

    Renard, Edouard / Manning (Firm), | TIBKAT | 2022


    Autonomous vehicle navigation with deep reinforcement learning

    Cabañeros López, Àlex | BASE | 2019

    Freier Zugriff

    Autonomous Navigation with Deep Reinforcement Learning in Carla Simulator

    Wang, Peilin / Technische Universität Dresden | SLUB | 2023



    An Enhanced Safe and Reliable Autonomous Driving Platform Using ROS2

    Cui, Hang / Zhang, Jiaming / Norris, William R. | British Library Conference Proceedings | 2020