Edge detection is one of the most important tasks in image processing. Medical image edge detection plays an important role in segmentation and object recognition of the human organs. It refers to the process of identifying and locating sharp discontinuities in medical images. In this paper, a neuro-fuzzy based approach is introduced to detect the edges for noisy medical images. This approach uses desired number of neuro-fuzzy subdetectors with a postprocessor for detecting the edges of medical images. The internal parameters of the approach are optimized by training pattern using artificial images. The performance of the approach is evaluated on different medical images and compared with popular edge detection algorithm. From the experimental results, it is clear that this approach has better performance than those of other competing edge detection algorithms for noisy medical images.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Medical Image Edge Detection Based on Neuro-Fuzzy Approach


    Beteiligte:
    J. Mehena (Autor:in) / M. C. Adhikary (Autor:in)

    Erscheinungsdatum :

    04.04.2016


    Anmerkungen:

    oai:zenodo.org:1124495



    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    DDC:    629 / 006




    A Neuro-fuzzy Based Approach to Cooperative Ramp Metering

    Greguric, Martin / Ivanjko, Edouard / Manduka, Sadko | IEEE | 2015


    TRAFFIC FLOW SIMULATION BY NEURO-FUZZY APPROACH

    Seitllari, Aksel | TIBKAT | 2014

    Freier Zugriff

    A neuro-fuzzy approach for ramp metering

    Bogenberger, K. / Keller, H. / May, A.D. | IEEE | 2000


    A neuro-fuzzy approach for ramp metering

    Bogenberger, K. / Keller, H. / May, A. D. et al. | British Library Conference Proceedings | 2000


    A neuro fuzzy approach for anti-jerk control

    Torkzadeh, D.D. / Baumann, J. / Kiencke, U. | Tema Archiv | 2003