As robots are being increasingly used in close proximity to humans and objects, it is imperative that robots operate safely and efficiently under real-world conditions. Yet, the environment is seldom known perfectly. Noisy sensors and actuation errors compound to the errors introduced while estimating features of the environment. We present a novel approach (1) to incorporate these uncertainties for robot state estimation and (2) to compute the probability of collision pertaining to the estimated robot configurations. The expression for collision probability is obtained as an infinite series, and we prove its convergence. An upper bound for the truncation error is also derived, and the number of terms required is demonstrated by analyzing the convergence for different robot and obstacle configurations. We evaluate our approach using two simulation domains which use a roadmap-based strategy to synthesize trajectories that satisfy collision probability bounds.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    An Integrated Localization, Motion Planning and Obstacle Avoidance Algorithm in Belief Space



    Erscheinungsdatum :

    2021-01-01



    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    DDC:    629



    UNIFIED MOTION PLANNING ALGORITHM FOR AUTONOMOUS DRIVING VEHICLE IN OBSTACLE AVOIDANCE MANEUVER

    LEE JIN-WOO / MUDALIGE UPALI PRIYANTHA / GU TIANYU et al. | Europäisches Patentamt | 2015

    Freier Zugriff

    Unified motion planning algorithm for autonomous driving vehicle in obstacle avoidance maneuver

    LEE JIN-WOO / MUDALIGE UPALI PRIYANTHA / GU TIANYU et al. | Europäisches Patentamt | 2016

    Freier Zugriff

    Issues on UGV Optimal Motion Planning and Obstacle Avoidance

    Hurni, Michael / Sekhavat, Pooya / Ross, Michael | AIAA | 2009


    Issues on UGV Optimal Motion Planning and Obstacle Avoidance

    Hurni, M. / Sekhavat, P. / Ross, M. et al. | British Library Conference Proceedings | 2009


    Predictive Motion Planning with Pipelined Feature-Based Obstacle Avoidance

    Seiferth, Christoph / Joos, Alexander / Frangenberg, Michael et al. | AIAA | 2015