Detection of anomalies and faults is a key element for long-term robot autonomy, because, together with subsequent diagnosis and recovery, allows to reach the required levels of robustness and persistency. In this paper, we propose an approach for detecting anomalous behaviors in autonomous robots starting from data collected during their routine operations. The main idea is to model the nominal (expected) behavior of a robot system using Hidden Markov Models (HMMs) and to evaluate how far the observed behavior is from the nominal one using variants of the Hellinger distance adopted for our purposes. We present a method for online anomaly detection that computes the Hellinger distance between the probability distribution of observations made in a sliding window and the corresponding nominal emission probability distri- bution. We also present a method for onine anomaly detection that computes a variant of the Hellinger distance between two HMMs representing nominal and observed behaviors. The use of the Hellinger distance positively impacts on both detection performance and interpretability of detected anomalies, as shown by results of experiments performed in two real-world application domains, namely, water monitoring with aquatic drones and socially assistive robots for elders living at home. In particular, our approach improves by 6% the area under the ROC curve of standard online anomaly detection methods. The capabilities of our online method to discriminate anomalous behaviors in real-world applications are statistically proved.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    HMMs for Anomaly Detection in Autonomous Robots



    Erscheinungsdatum :

    01.01.2020


    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    DDC:    629




    Statistical Sensor Modelling for Autonomous Driving Using Autoregressive Input-Output HMMs

    Zec, Edvin Listo / Mohammadiha, Nasser / Schliep, Alexander | IEEE | 2018


    Semi-supervised adapted HMMs for unusual event detection

    Dong Zhang, / Gatica-Perez, D. / Bengio, S. et al. | IEEE | 2005


    Score-Performance Matching Using HMMs

    Cano, P. / Loscos, A. | British Library Conference Proceedings | 1999


    3D surface analysis using coupled HMMs

    Pernkopf, F. | British Library Online Contents | 2005