This paper proposes a sliding window approach, whose length and time shift are dynamically adaptable in order to improve model confidence, speed and segmentation accuracy in human action sequences. Activity recognition is the process of inferring an action class from a set of observations acquired by sensors. We address the temporal segmentation problem of body part trajectories in Cartesian Space in which features are generated using Discrete Fast Fourier Transform (DFFT) and Power Spectrum (PS). We pose this as an entropy minimization problem. Using entropy from the classifier output as a feedback parameter, we continuously adjust the two key parameters in a sliding window approach, to maximize the model confidence at every step. The proposed classifier is a Dynamic Bayesian Network (DBN) model where classes are estimated using Bayesian inference. We compare our approach with our previously developed fixed window method. Experiments show that our method accurately recognizes and segments activities, with improved model confidence and faster convergence times, exhibiting anticipatory capabilities. Our work demonstrates that entropy feedback mitigates variability problems, and our method is applicable in research areas where action segmentation and classification is used. A working demo source code is provided online for academical dissemination purposes, by requesting the authors.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Trajectory-based human action segmentation


    Beteiligte:
    Santos, Luís (Autor:in) / Khoshhal, Kamrad (Autor:in) / Dias, Jorge (Autor:in)

    Erscheinungsdatum :

    01.02.2015


    Anmerkungen:

    doi:10.1016/j.patcog.2014.08.015



    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    DDC:    629



    Discovery of Driving Patterns by Trajectory Segmentation

    Moosavi, Sobhan / Nandi, Arnab / Ramnath, Rajiv | ArXiv | 2018

    Freier Zugriff

    Human Action Segmentation and Recognition Using Discriminative Semi-Markov Models

    Shi, Q. / Cheng, L. / Wang, L. et al. | British Library Online Contents | 2011


    Effective and efficient human action recognition using dynamic frame skipping and trajectory rejection

    Seo, Jeong-Jik / Kim, Hyung-Il / De Neve, Wesley et al. | British Library Online Contents | 2017


    Effective and efficient human action recognition using dynamic frame skipping and trajectory rejection

    Seo, Jeong-Jik / Kim, Hyung-Il / De Neve, Wesley et al. | British Library Online Contents | 2017