Object Categorization is the process of, identifying and labelling the various distinct Classes (Categories), in the given input image. The Deep Fuzzy Multi-Object Categorization (DFMOC) model, combines the learning capability of Convolution Neural Networks (CNN) and the uncertainty-managing ability of Fuzzy system, for carrying out the categorization task. This work starts with Background Elimination process for ensuring the image clarity, followed by Fuzzification and Fuzzy Entropy computation. Simple fuzzy sets are to be framed, by employing Fuzzy C-Means (FCM) algorithm, for fuzzification of the input image. Thresholding Block is incorporated, for determining the clusters . The Fuzzy Entropy Computation (FEC) is done, to minimize the Fuzziness rate of the acquired input and consequently, the layers of CNN are trained in accordance with that. Caltech-101 Dataset is been utilized for analysis. Average Precision Rate of Categorization (APRC), along with other metrics namely Time taken and Error Rate, shows that DFMOC model performs better than other models.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Deep Fuzzy Multi-Object Categorization in Scene



    Erscheinungsdatum :

    30.11.2020


    Anmerkungen:

    oai:zenodo.org:5839472
    International Journal of Innovative Technology and Exploring Engineering (IJITEE) 10(1) 262-267



    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    DDC:    629




    Improve scene categorization via sub-scene recognition

    Zhu, S. s. / Yung, N. H. | British Library Online Contents | 2014


    Recognizing in the depth: Selective 3D Spatial Pyramid Matching Kernel for object and scene categorization

    Redondo-Cabrera, C. / Lopez-Sastre, R. J. / Acevedo-Rodriguez, J. et al. | British Library Online Contents | 2014


    Gaussian Processes for Object Categorization

    Kapoor, A. / Grauman, K. / Urtasun, R. et al. | British Library Online Contents | 2010


    Feature Selection for Scene Categorization Using Support Vector Machines

    V., Devendran / Thiagarajan, Hemalatha / Santra, A. K. et al. | IEEE | 2008


    A Contrastive-Learning-Based Method for Alert-Scene Categorization

    Hu, Shaochi / Fan, Hanwei / Gao, Biao et al. | IEEE | 2022