The complexity and dexterity of the human hand make the development of natural and robust control of hand prostheses challenging. Although a large number of control approaches were developed and investigated in the last decades, limited robustness in real-life conditions often prevented their application in clinical settings and in commercial products. In this paper, we investigate a multimodal approach that exploits the use of eye-hand coordination to improve the control of myoelectric hand prostheses. The analyzed data are from the publicly available MeganePro Dataset 1, that includes multimodal data from transradial amputees and able-bodied subjects while grasping numerous household objects with ten grasp types. A continuous grasp-type classification based on surface electromyography served as both intent detector and classifier. At the same time, the information provided by eye-hand coordination parameters, gaze data and object recognition in first-person videos allowed to identify the object a person aims to grasp. The results show that the inclusion of visual information significantly increases the average offline classification accuracy by up to 15.61 ± 4.22% for the transradial amputees and of up to 7.37 ± 3.52% for the able-bodied subjects, allowing trans-radial amputees to reach average classification accuracy comparable to intact subjects and suggesting that the robustness of hand prosthesis control based on grasp-type recognition can be significantly improved with the inclusion of visual information extracted by leveraging natural eye-hand coordination behavior and without placing additional cognitive burden on the user.
Improving Robotic Hand Prosthesis Control With Eye Tracking and Computer Vision: A Multimodal Approach Based on the Visuomotor Behavior of Grasping
01.01.2021
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
DDC: | 629 |
Improving Vision-Based Robotic Grasping for Enhanced Comprehensibility
TIBKAT | 2023
|Soft-grasping with an anthropomorphic robotic hand using spiking neurons
BASE | 2020
|The analysis of asymptotical stability of robotic hand grasping
Online Contents | 1994
|