ABSTRACT: The purpose of this study is the economic optimisation of seabream farming through the determination of the production strategies that maximise the present operating profits of the cultivation process. The methodology applied is a particle swarm optimisation algorithm based on a bioeconomic model that simulates the process of seabream fattening. The biological submodel consists of three interrelated processes, stocking, growth, and mortality, and the economic submodel considers costs and revenues related to the production process. Application of the algorithm to seabream farming in Spain reveals that the activity is profitable and shows competitive differences associated with location. Additionally, the applications of the particle swarm optimisation algorithm could be of interest for the management of other important species, such as salmon (Salmo salar), catfish (Ictalurus punctatus), or tilapia (Oreochromis niloticus).


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Economic optimisation in seabream (Sparus aurata) aquaculture production using a particle swarm optimisation algorithm



    Erscheinungsdatum :

    01.12.2014


    Anmerkungen:

    doi:10.1007/s10499-014-9786-2
    Aquacult Int (2014) 22:1837–1849



    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    DDC:    629





    Parameters optimisation of a vehicle suspension system using a particle swarm optimisation algorithm

    Drehmer, Luis Roberto Centeno / Paucar Casas, Walter Jesus / Gomes, Herbert Martins | Tema Archiv | 2015


    Parameters optimisation of a vehicle suspension system using a particle swarm optimisation algorithm

    Drehmer, Luis Roberto Centeno / Paucar Casas, Walter Jesus / Gomes, Herbert Martins | Taylor & Francis Verlag | 2015


    Hybrid particle swarm optimisation algorithm for image segmentation

    Zhang,J. / Lu,J. / Li,H. et al. | Kraftfahrwesen | 2012


    An improved diversity-guided particle swarm optimisation for numerical optimisation

    Wang, Wenjun / Wang, Hui | British Library Online Contents | 2014