After watching AlphaGo a Netflix documentary which presents how AlphaGo is an AI computer game developed by deep-mind technologies based on deep reinforcement learning (DRL). Since then, my interest in reinforcement learning has been growing. In this project, I will apply reinforcement learning to develop an agent to play snake game. Where Deep learning will implement a neural Network to help the agent (snake) to learn what action must take to get a state. If we describe deep reinforcement learning (DRL) model where agent interacts with an environment and chooses an action. Based on action, agents receive feedback from the environment as states (or perceives) and rewards. A state = an array with 11 input values, each input values represent a neural network that provides an output of 3 values, each one represents three possible actions the agent (snake) can take (Straight, RightTurn andLeftTurn).


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    A Deep Reinforcement Learning Agent for Snake Game


    Beteiligte:

    Erscheinungsdatum :

    27.12.2023


    Anmerkungen:

    doi:10.36079/lamintang.ijai-01002.565
    International Journal of Artificial Intelligence; Vol 10 No 2: December 2023; 92-102 ; 2686-3251 ; 2407-7275 ; 10.36079/lamintang.ijai-01002



    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    DDC:    629




    Multi-Agent Deep Reinforcement Learning in Vehicular OCC

    Islam, Amirul / Musavian, Leila / Thomos, Nikolaos | IEEE | 2022


    Cloud game computing offload based on Multi-Agent Reinforcement Learning

    Tian, Kaicong / Liu, Yitong / Yang, Hongwen et al. | IEEE | 2022



    Automatic Itinerary Planning Using Triple-Agent Deep Reinforcement Learning

    Chen, Bo-Hao / Han, Jin / Chen, Shengxin et al. | IEEE | 2022


    Coordination and communication in deep multi-agent reinforcement learning

    Schroeder de Witt, CA | BASE | 2022

    Freier Zugriff