The addressed blind decision feedback equalizer (DFE) reverses the classical order of its feed-forward and feedback filters at the beginning of adaptation to achieve the best equalization of the minimum and maximum phase components of a channel transfer function. Although very effective, this blind equalization approach deals with the feedback filter mismatch at the time of its transformation from the front-end all-pole whitener of the received signal to the decision-directed feedback equalizer placed after the feedforward filter. To eliminate this weakness, the adaptive neuron slope is introduced instead of the fixed one into the stochastic gradient whitening algorithm based on the joint entropy maximization cost. The performance of the innovated algorithm is verified by simulating m-QAM (quadrature amplitude modulation) signals transmission over multipath channels. The algorithm with the adaptive neuron slope achieves a better whitening of the received signal spectrum, and, hence, increases the equalization successfulness.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Maximum entropy whitening algorithm with adaptive neuron slope for blind DFE


    Beteiligte:

    Erscheinungsdatum :

    01.01.2016


    Anmerkungen:

    Telfor Journal (2016) 8(1):2-7 ; ISSN: 1821-3251


    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    DDC:    629



    Homotopy algorithm for maximum entropy design

    Collins, Emmanuel G. / Davis, Lawrence D. / Richter, Stephen | AIAA | 1994


    Homotopy Algorithm for Maximum Entropy Design

    Collins Jr, E.G. | Online Contents | 1994


    A New Algorithm of Adaptive Fuzzy-Neuron Control

    Liu, T.-j. / Zhu, S.-a. / Zhu, X.-j. | British Library Online Contents | 2005


    Maximum entropy assisted maximum likelihood inversion

    Rehacek, J. / Hradil, Z. | IEEE | 2005