Developing techniques for mobile robot navigation constitutes one of the major trends in the current research on mobile robotics. This paper develops a local model network (LMN) for mobile robot navigation. The LMN represents the mobile robot by a set of locally valid submodels that are Multi-Layer Perceptrons (MLPs). Training these submodels employs Back Propagation (BP) algorithm. The paper proposes the fuzzy C-means (FCM) in this scheme to divide the input space to sub regions, and then a submodel (MLP) is identified to represent a particular region. The submodels then are combined in a unified structure. In run time phase, Radial Basis Functions (RBFs) are employed as windows for the activated submodels. This proposed structure overcomes the problem of changing operating regions of mobile robots. Read data are used in all experiments. Results for mobile robot navigation using the proposed LMN reflect the soundness of the proposed scheme.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Mobile Robot Navigation Using Local Model Networks


    Beteiligte:

    Erscheinungsdatum :

    21.06.2007


    Anmerkungen:

    oai:zenodo.org:1072838



    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    DDC:    629




    Autonomous Mobile Robot Navigation Using Scene Matching with Local Features

    Shioya, Toshiaki / Kogure, Kazushige / Iwata, Tomoyuki et al. | British Library Online Contents | 2016


    Mobile Robot Navigation Using Neural Networks and Nonmetrical Environment Models

    Meng, M. / Kak, A. C. | British Library Online Contents | 1993



    Indoor navigation mobile robot

    GUO WANJIN / ZHAO WUDUAN / BIAN WANLONG et al. | Europäisches Patentamt | 2020

    Freier Zugriff