Robotic ecologies are networks of heterogeneous robotic devices pervasively embedded in everyday environments, where they cooperate to perform complex tasks. While their potential makes them increasingly popular, one fundamental problem is how to make them both autonomous and adaptive, so as to reduce the amount of preparation, pre-programming and human supervision that they require in real world applications. The project RUBICON develops learning solutions which yield cheaper, adaptive and efficient coordination of robotic ecologies. The approach we pursue builds upon a unique combination of methods from cognitive robotics, machine learning, planning and agent-based control, and wireless sensor networks. This paper illustrates the innovations advanced by RUBICON in each of these fronts before describing how the resulting techniques have been integrated and applied to a proof of concept smart home scenario. The resulting system is able to provide useful services and pro-actively assist the users in their activities. RUBICON learns through an incremental and progressive approach driven by the feedback received from its own activities and from the user, while also self-organizing the manner in which it uses available sensors, actuators and other functional components in the process. This paper summarises some of the lessons learned by adopting such an approach and outlines promising directions for future work.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Robotic Ubiquitous Cognitive Ecology for Smart Homes


    Beteiligte:
    Amato G. (Autor:in) / BACCIU, DAVIDE (Autor:in) / Broxvall, M. (Autor:in) / CHESSA, STEFANO (Autor:in) / Coleman, S. (Autor:in) / Di Rocco, M. (Autor:in) / Dragone, M. (Autor:in) / GALLICCHIO, CLAUDIO (Autor:in) / Gennaro, C. (Autor:in) / Lozano, H. (Autor:in)

    Erscheinungsdatum :

    01.01.2015



    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    DDC:    629



    Ubiquitous robotic system

    Sato, T. | British Library Online Contents | 1997


    A cognitive robotic ecology approach to self-configuring and evolving AAL systems

    Dragone, M. / Amato, G. / BACCIU, DAVIDE et al. | BASE | 2015

    Freier Zugriff

    MeRegioMobil-Labor - Entwicklungsumgebung für zukünftige Smart-homes

    Reiner, Ulrich / Kahl, Mattias / Leibfried, Thomas et al. | Tema Archiv | 2010


    Robotic Performance: An Ecology of Response

    Dimitrova, Zornitsa | BASE | 2017

    Freier Zugriff

    Ecology of Smart Port

    Mi, Weijian / Liu, Yuan | Springer Verlag | 2022