© . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ ; In this work, a nonlinear model predictive control (NMPC) strategy is proposed to improve the efficiency and enhance the durability of a proton exchange membrane fuel cell (PEMFC) power system. The PEMFC controller is based on a distributed parameters model that describes the nonlinear dynamics of the system, considering spatial variations along the gas channels. Parasitic power from different system auxiliaries is considered, including the main parasitic losses which are those of the compressor. A nonlinear observer is implemented, based on the discretised model of the PEMFC, to estimate the internal states. This information is included in the cost function of the controller to enhance the durability of the system by means of avoiding local starvation and inappropriate water vapour concentrations. Simulation results are presented to show the performance of the proposed controller over a given case study in an automotive application (New European Driving Cycle). With the aim of representing the most relevant phenomena that affects the PEMFC voltage, the simulation model includes a two-phase water model and the effects of liquid water on the catalyst active area. The control model is a simplified version that does not consider two-phase water dynamics. ; Peer Reviewed ; Postprint (author's final draft)
Nonlinear predictive control for durability enhancement and efficiency improvement in a fuel cell power system
01.01.2016
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
proton exchange membrane fuel cell , degradation , starvation , power system control , Classificació INSPEC::Control theory::Control nonlinearities , control nonlinearities , distributed parameter system , control theory , predictive control , Àrees temàtiques de la UPC::Informàtica::Automàtica i control , nonlinear observer , observability , model predictive control
Fuel cell system power-split control for component durability management
Europäisches Patentamt | 2024
|Improvement of Fuel Cell Durability Performance by Avoiding High Voltage
Springer Verlag | 2019
|Improvement of Fuel Cell Durability Performance by Avoiding High Voltage
Online Contents | 2019
|