Inertial Measurement Units (IMUs) have gained popularity in gait analysis and human motion tracking, and they provide certain advantages over stationary line-of-sight-dependent Optical Motion Capture (OMC) systems. IMUs appear as an appropriate alternative solution to reduce dependency on bulky, room-based hardware and facilitate the analysis of walking patterns in clinical settings and daily life activities. However, most inertial gait analysis methods are unpractical in clinical settings due to the necessity of precise sensor placement, the need for well-performed calibration movements and poses, and due to distorted magnetometer data in indoor environments as well as nearby ferromagnetic material and electronic devices. To address these limitations, recent literature has proposed methods for self-calibrating magnetometer-free inertial motion tracking, and acceptable performance has been achieved in mechanical joints and in individuals without neurological disorders. However, the performance of such methods has not been validated in clinical settings for individuals with neurological disorders, specifically individuals with incomplete Spinal Cord Injury (iSCI). In the present study, we used recently proposed inertial motion-tracking methods, which avoid magnetometer data and leverage kinematic constraints for anatomical calibration. We used these methods to determine the range of motion of the Flexion/Extension (F/E) hip and Abduction/Adduction (A/A) angles, the F/E knee angles, and the Dorsi/Plantar (D/P) flexion ankle joint angles during walking. Data (IMU and OMC) of five individuals with no neurological disorders (control group) and five participants with iSCI walking for two minutes on a treadmill in a self-paced mode were analyzed. For validation purposes, the OMC system was considered as a reference. The mean absolute difference (MAD) between calculated range of motion of joint angles was 5.00°, 5.02°, 5.26°, and 3.72° for hip F/E, hip A/A, knee F/E, and ankle D/P flexion angles, respectively. In ...


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Validation of Non-Restrictive Inertial Gait Analysis of Individuals with Incomplete Spinal Cord Injury in Clinical Settings


    Beteiligte:
    Haji Hassani, Roushanak (Autor:in) / Willi, Romina (Autor:in) / Rauter, Georg (Autor:in) / Bolliger, Marc (Autor:in) / Seel, Thomas (Autor:in)

    Erscheinungsdatum :

    2022-06-02


    Anmerkungen:

    Haji Hassani, Roushanak; Willi, Romina; Rauter, Georg; Bolliger, Marc; Seel, Thomas (2022). Validation of Non-Restrictive Inertial Gait Analysis of Individuals with Incomplete Spinal Cord Injury in Clinical Settings. Sensors, 22(11):4237.



    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    DDC:    629




    Mind your step: Target walking task reveals gait disturbance in individuals with incomplete spinal cord injury

    Mohammadzada, Freschta / Zipser, Carl Moritz / Easthope, Chris A et al. | BASE | 2022

    Freier Zugriff

    Volition-adaptive control for gait training using wearable exoskeleton: preliminary tests with incomplete spinal cord injury individuals

    Rajasekaran, Vijaykumar / López Larraz, Eduardo / Trincado Alonso, Fernando et al. | BASE | 2018

    Freier Zugriff

    Targeted walking in incomplete spinal cord injury: Role of corticospinal control

    Meyer, Christian / Filli, Linard / Stalder, Stephanie Anja et al. | BASE | 2020

    Freier Zugriff


    Data-driven characterization of walking after a spinal cord injury using inertial sensors

    Werner, Charlotte / Gönel, Meltem / Lerch, Irina et al. | BASE | 2023

    Freier Zugriff