Regenerative braking is one of the most promising and ecologically friendly solutions for improving energy efficiency and vehicle stability in electric and hybrid electric cars. This research describes a data-driven method for detecting and diagnosing issues in hybrid electric vehicle regenerative braking systems. Early fault identification can help enhance system performance and health. This study is centered on the construction of an inference system for fault diagnosis in a generalized fuzzy environment. For such an inference system, finite-state deterministic fully intuitionistic fuzzy automata (FDFIFA) are established. Semigroup of FDFIFA and its algebraic properties including substructures and structure-preserving maps are investigated. The inference system uses FDFIFA semigroups as variables, and FDFIFA semigroup homomorphisms are employed to illustrate the relationship between variables. The newly established model is then applied to diagnose the possible fault and their nature in the regenerative braking systems of hybrid electric vehicles by modeling the performance of superchargers and air coolers. The method may be used to evaluate faults in a wide range of systems, including autos and aerospace systems.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Fault Diagnosis in Regenerative Braking System of Hybrid Electric Vehicles by Using Semigroup of Finite-State Deterministic Fully Intuitionistic Fuzzy Automata


    Beteiligte:
    Aslam, Farah (Autor:in) / Kousar, Sajida (Autor:in) / Kausar, Nasreen (Autor:in) / Pamucar, Dragan (Autor:in) / Addis, Gezahagne Mulat (Autor:in)

    Erscheinungsdatum :

    01.04.2022



    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch


    Klassifikation :

    DDC:    629



    REGENERATIVE BRAKING FOR ELECTRIC AND HYBRID VEHICLES

    MILLER MOSHE / DRORI JONATHAN / ZARCHI YORAM | Europäisches Patentamt | 2020

    Freier Zugriff

    Regenerative braking for electric and hybrid vehicles

    MILLER MOSHE / DRORI JONATHAN / ZARCHI YORAM | Europäisches Patentamt | 2021

    Freier Zugriff

    Regenerative Braking for Electric and Hybrid Vehicles

    MILLER MOSHE / DRORI JONATHAN / ZARCHI YORAM | Europäisches Patentamt | 2019

    Freier Zugriff

    REGENERATIVE BRAKING FOR ELECTRIC AND HYBRID VEHICLES

    MILLER MOSHE / DRORI JONATHAN / ZARCHI YORAM | Europäisches Patentamt | 2020

    Freier Zugriff

    Regenerative Braking for Electric and Hybrid Vehicles

    MILLER MOSHE / DRORI JONATHAN / ZARCHI YORAM | Europäisches Patentamt | 2024

    Freier Zugriff