Xin G, Lin H-C, Smith J, Cebe O, Mistry M. A Model-based Hierarchical Controller for Legged Systems subject to External Disturbances. In: IEEE/RSJ Int. Conf. on Robotics and Automation . 2018. ; Legged robots have many potential applications in real-world scenarios where the tasks are too dangerous for humans, and compliance is needed to protect the system against external disturbances and impacts. In this paper, we propose a model-based controller for hierarchical tasks of legged systems subject to external disturbance. The control framework is based on projected inverse dynamics controller, such that the control law is decomposed into two orthogonal subspaces, i.e., the constrained and the unconstrained subspaces. The unconstrained component controls multiple desired tasks with impedance responses. The constrained space controller maintains the contact subject to unknown external disturbances, without the use of any force/torque sensing at the contact points. By explicitly modelling the external force, our controller is robust to external disturbances and errors arising from incorrect dynamic model information. The main contributions of this paper include (1) incorporating an impedance controller to control external disturbances and allow impedance shaping to adjust the behaviour of the motion under external disturbances, (2) optimising contact forces within the constrained subspace that also takes into account the external disturbances without using force/torque sensors at the contact locations. The techniques are evaluated on the ANYmal quadruped platform under a variety of scenarios.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    A Model-based Hierarchical Controller for Legged Systems subject to External Disturbances


    Beteiligte:
    Xin, Guiyang (Autor:in) / Lin, Hsiu-Chin (Autor:in) / Smith, Joshua (Autor:in) / Cebe, Oguzhan (Autor:in) / Mistry, Michael (Autor:in)

    Erscheinungsdatum :

    2018-01-01


    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch


    Schlagwörter :

    Klassifikation :

    DDC:    006 / 629




    Path prediction for ships subject to external disturbances

    Bryrup, B. / Blanke, M. / Holst, J. et al. | Tema Archiv | 1986


    A force threshold-based position controller for legged locomotion

    Palankar, M. | British Library Online Contents | 2015


    Multi-controller multi-objective locomotion planning for legged robots

    Brandao, M / Fallon, M / Havoutis, I | BASE | 2019

    Freier Zugriff


    Model Based Online Monitoring of Uncertain Plants Subject to Stochastic Disturbances

    Löbl, David / Mumm, Nils C. / Holzapfel, Florian | AIAA | 2016