Autism spectrum disorder (ASD) is a life-long neurological disability, and a cure has not yet been found. ASD begins early in childhood and lasts throughout a person’s life. Through early intervention, many actions can be taken to improve the quality of life of children. Robots are one of the best choices for accompanying children with autism. However, for most robots, the dialogue system uses traditional techniques to produce responses. Robots cannot produce meaningful answers when the conversations have not been recorded in a database. The main contribution of our work is the incorporation of a conversation model into an actual robot system for supporting children with autism. We present the use a neural network model as the generative conversational agent, which aimed at generating meaningful and coherent dialogue responses given the dialogue history. The proposed model shares an embedding layer between the encoding and decoding processes through adoption. The model is different from the canonical Seq2Seq model in which the encoder output is used only to set-up the initial state of the decoder to avoid favoring short and unconditional responses with high prior probability. In order to improve the sensitivity to context, we changed the input method of the model to better adapt to the utterances of children with autism. We adopted transfer learning to make the proposed model learn the characteristics of dialogue with autistic children and to solve the problem of the insufficient corpus of dialogue. Experiments showed that the proposed method was superior to the canonical Seq2sSeq model and the GAN-based dialogue model in both automatic evaluation indicators and human evaluation, including pushing the BLEU precision to 0.23, the greedy matching score to 0.69, the embedding average score to 0.82, the vector extrema score to 0.55, the skip-thought score to 0.65, the KL divergence score to 5.73, and the EMD score to 12.21.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Enhance the Language Ability of Humanoid Robot NAO through Deep Learning to Interact with Autistic Children


    Beteiligte:
    She, Tianhao (Autor:in) / Ren, Fuji (Autor:in)

    Erscheinungsdatum :

    14.10.2021


    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    DDC:    629





    HUMANOID ROBOT

    FLEURY PAUL GLONINGER / RESH BRADLEY AARON / YOUNG JOSEPH MICHAEL et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Thigh structure of humanoid robot and humanoid robot

    WANG HONGTAO / JIN YONGBIN / LIU XIANWEI et al. | Europäisches Patentamt | 2025

    Freier Zugriff

    Leg structure of humanoid robot and humanoid robot

    WANG HONGTAO / JIN YONGBIN / LIU XIANWEI et al. | Europäisches Patentamt | 2025

    Freier Zugriff

    Foot structure for humanoid robot and humanoid robot

    LIU HOUDE / LIAO TAO | Europäisches Patentamt | 2025

    Freier Zugriff