This paper proposes a parallelizable real-time algorithm for integrated experiment-design model predictive control (MPC). Integrated experiment design MPC is needed if a system is not observable at a tracking reference and needs to be excited on purpose in order to be able to estimate the system’s states and parameters. The contribution of this paper is a real-time MPC algorithm using two processors. On the first processor an extended Kalman filter (EKF) as well as a parametric certainty-equivalent MPC controller are implemented, which can provide immediate feedback at high sampling rates. On the second processor, optimal experiment design (OED) problems are solved in parallel in order to perturb the certainty-equivalent MPC control loop improving the accuracy of the state estimator at a lower sampling rate. We show that this framework can achieve optimal tradeoffs between OED and control objectives. The approach is applied to a biochemical process in order to illustrate that the proposed controller can achieve superior control performance when compared to certainty-equivalent MPC.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Parallelizable Real-Time Algorithm for Integrated Experiment Design MPC



    Erscheinungsdatum :

    2018-01-01



    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    DDC:    629



    A parallelizable load balancing algorithm

    LOEHNER, RAINALD / RAMAMURTI, RAVI / MARTIN, DOROTHEE | AIAA | 1993


    Expedient and Parallelizable Sparse Coding Algorithm for Large Datasets

    Liang, Zongxian / Deshmukh, Rohit / McNamara, Jack J. et al. | AIAA | 2016



    Expedient and Parallelizable Sparse Coding Algorithm for Large Datasets (AIAA 2016-0463)

    Liang, Zongxian / Deshmukh, Rohit / McNamara, Jack J. et al. | British Library Conference Proceedings | 2016


    Towards parallelizable sampling–based nonlinear model predictive control

    Bobiti, R.V. / Lazar, M. | BASE | 2017

    Freier Zugriff