15 páginas, 15 figuras, 4 tablas. ; A method for evaluating, at video rate, the quality of actions for a single camera while mapping unknown indoor environments is presented. The strategy maximizes mutual information between measurements and states to help the camera avoid making ill-conditioned measurements that are appropriate to lack of depth in monocular vision systems. Our system prompts a user with the appropriate motion commands during 6-DOF visual simultaneous localization and mapping with a handheld camera. Additionally, the system has been ported to a mobile robotic platform, thus closing the control-estimation loop. To show the viability of the approach, simulations and experiments are presented for the unconstrained motion of a handheld camera and for the motion of a mobile robot with nonholonomic constraints. When combined with a path planner, the technique safely drives to a marked goal while, at the same time, producing an optimal estimated map. ; This work was supported by the Spanish Ministry of Science and Innovation under Projects UbROB (DPI 2007-61452), PAU (DPI2008-06022), and MIPRCV (Consolider-Ingenio 2010), and the EU URUS Project IST-FP6-STREP-045062. ; Peer reviewed
Action Selection for Single-Camera SLAM
01.01.2010
doi:10.1109/TSMCB.2010.2043528
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
DDC: | 629 |
ORB-SLAM based semi-dense mapping with monocular camera
IEEE | 2017
|Dynamic view selection for multi-camera action recognition
British Library Online Contents | 2016
|