The operation of heavy-duty vehicles at small inter-vehicular distances, known as platoons, lowers the aerodynamic drag and, therefore, reduces fuel consumption and greenhouse gas emissions. Tests conducted on flat roads have shown the potential of platooning to reduce the fuel consumption of about 10%. However, platoons are expected to operate on public highways with varying topography alongside other vehicles. Due to the large mass and limited engine power of heavy-duty vehicles, road slopes have a significant impact on feasible and optimal speed profiles. For single vehicles, experiments have shown that optimizing the speed according to the road profile resulted in fuel saving of up to 3.5%. The use of such a look-ahead control framework is expected to lead to large benefits also for platooning. This thesis presents the design of safe and fuel-efficient control of heavy-duty vehicle platoons driving on realistic road profiles. The scenario where the platooning vehicles cooperate to optimize their overall fuel-efficiency is studied together with the scenario where the vehicles do not explicitly cooperate. First, we propose a control architecture that splits the cooperative platooning control problem into two layers. The top layer computes a reference speed profile that ensures fuel-efficient operation of the entire platoon based on dynamic programming. The bottom layer relies on model predictive control to safely track the reference speed. Simulations show the ability of the proposed controller to save up to 12% of fuel for following vehicles compared to existing platoon controllers and to safely react to emergency braking of the leading vehicle. Second, we propose a gear management layer that fits in the cooperative platooning control architecture and explicitly takes the gear selection into account. The underlying optimal control problem aims at minimizing the vehicle fuel consumption and the reference tracking deviations. Simulations indicate how this formulation outperforms existing alternatives, both in ...


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Look-ahead control for fuel-efficient and safe heavy-duty vehicle platooning


    Beteiligte:
    Turri, Valerio (Autor:in)

    Erscheinungsdatum :

    2018-01-01


    Medientyp :

    Hochschulschrift


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    DDC:    629




    Cooperative look-ahead control for fuel-efficient and safe heavy-duty vehicle platooning

    Turri, V. / Besselink, B. / Johansson, K.H. | BASE | 2017

    Freier Zugriff

    Cooperative look-ahead control for fuel-efficient and safe heavy-duty vehicle platooning

    Turri, Valerio / Besselink, Bart / Johansson, Karl H. | BASE | 2016

    Freier Zugriff

    Fuel-efficient heavy-duty vehicle platooning by look-ahead control

    Turri, Valerio / Besselink, Bart / Mårtensson, Jonas et al. | BASE | 2014

    Freier Zugriff

    Look-ahead cruise control for heavy duty vehicle platooning

    Alam, Assad / Martensson, Jonas / Johansson, Karl H. | IEEE | 2013