With recent advances in technology and emergence of affordable RGB-D sensors for a wider range of users, markerless motion capture has become an active field of research both in computer vision and computer graphics. In this thesis, we designed a POC (Proof of Concept) for a new tool that enables us to perform motion capture by using a variable number of commodity RGB-D sensors of different brands and technical specifications on constraint-less layout environments. The main goal of this work is to provide a tool with motion capture capabilities by using a handful of RGB-D sensors, without imposing strong requirements in terms of lighting, background or extension of the motion capture area. Of course, the number of RGB-D sensors needed is inversely proportional to their resolution, and directly proportional to the size of the area to track to. Built on top of the OpenNI 2 library, we made this POC compatible with most of the nonhigh-end RGB-D sensors currently available in the market. Due to the lack of resources on a single computer, in order to support more than a couple of sensors working simultaneously, we need a setup composed of multiple computers. In order to keep data coherency and synchronization across sensors and computers, our tool makes use of a semi-automatic calibration method and a message-oriented network protocol. From color and depth data given by a sensor, we can also obtain a 3D pointcloud representation of the environment. By combining pointclouds from multiple sensors, we can collect a complete and animated 3D pointcloud that can be visualized from any viewpoint. Given a 3D avatar model and its corresponding attached skeleton, we can use an iterative optimization method (e.g. Simplex) to find a fit between each pointcloud frame and a skeleton configuration, resulting in 3D avatar animation when using such skeleton configurations as key frames.
Motion capture based on RGBD data from multiple sensors for avatar animation
01.01.2016
Hochschulschrift
Elektronische Ressource
Englisch
WhoLoDancE: Deliverable 2.6 - Motion capture sequences and skeleton avatar
BASE | 2017
|British Library Online Contents | 2012
|Tracking the articulated motion of the human body with two RGBD cameras
British Library Online Contents | 2015
|