Nonlinear model predictive control (NMPC) is an effective method for optimal operation of batch processes. Most dynamic models however contain significant uncertainties. It is therefore important to take these uncertainties into account in the formulation of the open-loop MPC problem to prevent infeasibilities or worse performance. An issue of such formulations is the disregard of feedback in the predictions, which leads to overly conservative control actions. The introduction of feedback through parametrized control policies is one way to solve this issue. In this work we compare the performance of affine feedback policies against more complex policies given by radial basis function networks. We incorporate these feedback policies into a polynomial chaos based stochastic NMPC algorithm to gauge their efficiency. The parameters of the feedback policies are either determined online by the NMPC algorithm or are pre-computed offline.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Stochastic NMPC of Batch Processes Using Parameterized Control Policies


    Beteiligte:
    Eric Bradford (Autor:in) / Lars Imsland (Autor:in)

    Erscheinungsdatum :

    01.09.2018


    Anmerkungen:

    oai:zenodo.org:1407477
    Computer Aided Chemical Engineering 44 625-630



    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    DDC:    629




    Exact turnpike properties and economic NMPC

    Faulwasser, Timm / Bonvin, Dominique | British Library Online Contents | 2017



    A Predictive Traffic Controller for Sustainable Mobility Using Parameterized Control Policies

    Zegeye, S. K. / De Schutter, B. / Hellendoorn, J. et al. | IEEE | 2012


    NMPC for Multicopter's Trajectory Tracking Using Modified Rodrigues Parameters

    Nisar, Barza / Kamel, Mina / Siegwart, Roland | IEEE | 2018


    Decentralized Control of UAV Swarms for Bandwidth-Aware Video Surveillance Using NMPC

    Rezaei, Mohammad Amin / Manfredi, Gioacchino / Racanelli, Vito Andrea et al. | IEEE | 2024